新闻  |   论坛  |   博客  |   在线研讨会
ChatGPT加剧恐慌?4成AIoT开发者认为AI会产生意识 | 中国AIoT开发者报告正式发布(1)
AI科技大本营 | 2023-04-24 20:15:04    阅读:178   发布文章

据国际数据公司IDC预测,到2025年,全球IoT连接的设备数量将达到519亿,其中中国将达到80亿。尽管相较之前,近两年IoT的讨论热度有所消减,但并没有影响到在产业界的持续布局。

如何实现万物智联是产业界长期以来主要关注的方向。如同互联网通过人作为主脑和终端的连接方式,物联网也需要主脑进行数据的搜集、决策和分析,同时也需要智能终端进行执行操作。AI+IoT,即实现了AI作为大脑和终端实施,以及IoT作为神经网络的融合落地。伴随着AIoT相关技术的不断成熟,越来越多的企业开始投入到AIoT领域的研发和应用当中,除了传统制造、能源等产业,还涉及金融、医疗健康、农业、城市建设和管理等多个领域,让众多开发者看到了巨大的机会。

为了帮助AIoT技术从业者和生产企业探索更多可能,CSDN重磅发布《2022-2023 中国AIoT开发者调查报告》,从开发者生态、技术工具、行业场景、发展路径、未来范式等维度展开分析。同时,我们也特邀该领域意见领袖对报告进行深度解析和点评。

图片

纵览本报告,我们有几个重点发现:
  • 大部分AIoT的开发者工作状态较为自在,其中自由开发者占到39%;
  • 拥有3-5年技术开发经验的开发者人数成倍数增长,说明这一领域的爆发期是在五年前;

  • 有38.5%的开发者最感兴趣的AIoT技术是数据科学/数据挖掘/数据分析,其次是机器学习/深度学习/神经网络,占比37.6%;

  • 生成式大模型技术的突然爆发对于开发者来说还有待观察,但预期向好;

  • 42.5%的开发者表示所在公司生产的AIoT设备用于制造业,41%的开发者认为感知/控制是自动驾驶技术中最具挑战性的环节;

  • 43%的开发者认为,国际上AIoT的发展以底层技术作为主导,国内则以平台、应用和服务层主导AIoT产业价值链;

  • 30%的开发者表示,国外在可穿戴设备、智能家居,以及智能电网等的应用上更加超前;

  • 超过9成开发者认为机器可以胜任部分到大部分人类工作,41%的开发者认为人工智能有可能产生出意识。

图片

开发者生态:时间自由、人数增长、聚焦机器学习/深度学习近来,ChatGPT引发国内AI产业爆火,大佬们纷纷布局大语言模型。从美团“退休”后,王慧文在上个月创办“光年之外”,收购袁进辉的一流科技,旨在打造中国版ChatGPT。王慧文的英雄帖显然召唤出了产业界的热情,李开复开始筹组Project AI 2.0,王小川携带5000万美元入场费,创办百川智能……当AI大佬们跑步进入新的战场,从事AIoT的开发者又呈现出怎样的生态?从调查数据来看,大部分AIoT开发者工作状态较为自在,图1中,自由开发者占到39%,作为兼职和利用业余时间参与的比例为40.0%,和自由开发者数量相当。相较而言,全职开发者最少,只占到调查人群的五分之一左右。这一方面说明开发者群体愈加倾向自由职业,另一方面也说明AIoT是自由开发者聚集的领域。图片图1 开发者参与AIoT状态从2017年开始,AIoT被频繁提及,在此之前,开发者更多是在AI或者IoT的独立领域。而当智能家居、智能制造、智能城市等落地应用端被推向风口,AIoT逐渐成为产业界的主流讨论方向。从图2不难看出,拥有3-5年技术开发经验的开发者人数成倍数增长,说明这一领域的爆发期正是在五年前。而近年来,得益于市场潜力地不断挖掘,越来越多的开发者选择进入这一领域。据调查显示,近1-2年进入这一领域的开发者占比为32%,而就在去年,这一数据进一步增长到41%。图片图2 开发者从事AIoT技术开发的时间具体到所从事的技术领域机器学习/深度学习算法工程师、数据科学家/数据分析师/数据挖掘工程师和计算机视觉/图像识别/图像处理工程师的队伍较为庞大,位列前三,分别占比10.5%、10.4%及9.1%。另外,在软件工程师和硬件工程师的统筹统计中,软件工程师以38.5%的占比远高于硬件(芯片、传感器、控制器工程师+智能硬件工程师)9.2%的占比。图片图3 开发者从事AI/IoT的技术领域

图片

技术工具:数据科学/机器学习+AI大模型+存储/云计算+工具箱李彦宏今年初曾公开表示:“如果让我来判断第四次科技革命的标志,我认为是深度学习算法”。同时,他也认为“大语言模型的出现对于云计算来说,是一个 Game Changer,会改变云计算的游戏规则。和他预判相一致的是,在AIoT领域,开发者最感兴趣的技术是数据科学/数据挖掘/数据分析(见图4),有38.5%的开发者做出了这一选择,以及机器学习/深度学习/神经网络,占比37.6%,这样的结果也完全符合AI算据、算法、算力的三大要义。在通用技术上,29.4%的开发者选择了计算机视觉/图像识别/图像处理,可见视觉仍然被赋予极高期待。以上AI技术为AIoT发挥的作用主要体现在,可以帮助开发者处理和分析从各种物联设备中收集到的海量数据,从而为企业提供更准确、更有用的洞察和决策支持。与此同时,可以帮助开发人员构建智能应用程序,在实时监测和控制物联设备方面发挥着重要作用。此外,比较出乎意料的是,AIGC/大语言模型的选择人数只占到4.8%,本调查的收集期限覆盖了ChatGPT的起势期(去年12月-今年1月),国内大语言模型的火爆期主要集中在今年2-3月。图片图4 开发者对AIoT感兴趣的技术方向在另一个关于AI热点技术突破的问题上,26.6%的开发者表示看好生成式人工智能(图5)。上述4.8%,以及这里的26.6%两个数据恰好说明了,生成式大模型技术的突然爆发对于开发者来说还有待观察,但预期向好。而除了生成式人工智能之外,大规模数据集和大模型开源也是开发者看好的方向,两个选项分别占比23.4%和20.9%。图片图5 开发者看好的AI热点技术突破另外,大规模物联网应用还需要处理海量数据,这些数据需要进行有效的存储和管理。云计算是建立在大规模数据存储之上的一项关键技术,它提供了强大的计算能力和可扩展性,帮助开发人员更好地处理和分析数据。据调查显示(图6),超过3成的开发者日常会处理数据存储相关的问题,其次是云计算,占比28%。图片图6 开发者接触最多的AIoT技术目前AIoT的开发者工具应用主要集中在视觉图像、语音合成和自然语言处理等领域(见图7)。调查数据显示,近三成开发者会用到AI人像修复工具,该技术可以帮助开发者对人像进行自动修复和增强,提高应用设备上人脸检测的效果以及准确性。排在二、三位的分别是AI目标检测和AI视频抠像/人像抠像,均与机器视觉相关,之后是人工智能语音合成。图片图7 开发者使用的AI工具箱


*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。

参与讨论
登录后参与讨论
推荐文章
最近访客